Condition Monitoring of HV Bushings in the Presence of Missing Data Using Evolutionary Computing
نویسندگان
چکیده
The work proposes the application of neural networks with particle swarm optimisation (PSO) and genetic algorithms (GA) to compensate for missing data in classifying high voltage bushings. The classification is done using DGA data from 60966 bushings based on IEEEc57.104, IEC599 and IEEE production rates methods for oil impregnated paper (OIP) bushings. PSO and GA were compared in terms of accuracy and computational efficiency. Both GA and PSO simulations were able to estimate missing data values to an average 95% accuracy when only one variable was missing. However PSO rapidly deteriorated to 66% accuracy with two variables missing simultaneously, compared to 84% for GA. The data estimated using GA was found to classify the conditions of bushings than the PSO. Key-Words: Bushings, DGA, Particle Swarm Optimisation (PSO), Genetic Algorithms, Autoencoder, Missing data, Regression
منابع مشابه
Sensor Failure Compensation Techniques for HV Bushing Monitoring using Evolutionary Computing
The work proposes the application of neural networks with particle swarm optimisation (PSO) and genetic algorithms (GA) to compensate for missing data in classifying high voltage bushings. The classification is done using DGA data from 60966 bushings based on IEEEc57.104, IEC599 and IEEE production rates methods for oil impregnated paper (OIP) bushings. PSO and GA were compared in terms of accu...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملEstimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0705.2516 شماره
صفحات -
تاریخ انتشار 2007